
11 " x " ,

ADEPT

AUTOMATED DESIGN EXPERT

PROGRAMMER'S MANUAL

Prepared by:
• John P. Frazier

U.V.L. Narayana
- of-

Autodesk, Inc.

1303 Hightower Trail, Suite 170
Atlanta, GA 30350

Prepared for :
NASA - Lewis Research Center

Cleveland, OH 44135

Contract # NAS3-25150

An Expert System for Finite Element Modeling

(NASA-CR-I94756) AOEPT: AUTOMATED

DESIGN EXPERT PROGRAMMER'S MANUAL

(Autodesk) 21 p

N94-71333

Uncl as

June 8, 1990

z9/61 01983_3

ADEPT PROGRAMMER'S MANUAL

TABLE OF CONTENTS

PAGE NO.

Program Layout ... 1

Program Examples .. 2

Compiling a New Version of Adept 5

Coding Structure for Routines 7

Table 1.

Table 2.

Table 3.

Table 4.

Tables

Contents of Directory Head 8

Contents of Directory Feat 17

Contents of Directory Geom 18

Contents of Directory Misc 19

PROGRAM LAYOUT

Adept is an application program that guides a design engineer in the creation
ot an appropriate finite element mesh from the starting point of having a
solid. Adept is dependent upon AutoSolid for the solid geometry and
windowing capabilities. The transfer of information between AutoSoh'd and

Adept is accomplished through the AutoSolid Programming Interface (API)
included withir/ AutoSolid. Integrated into Adept is an expert system
possessing knowledge about the assumptions and the methodolog_.
associated-with finite element modeling and analysis. The expert system shell
being used is CLIPS from the NASA Johnson Space Flight Center. The

knowledge is in the form of a rule-base that drives the accumulation of
needed information from both the user and AutoSolid. Decision branches are

made based on the facts in the working memory defining the specific
slthation.

Conceptually, Adept consists of three basic parts. In the directory "nasa" are
the following directories- clips, head, and envdes, the environment
descriptor. Clips is the expert system portion of the program 'and the
environment descriptor is a group of routines that creates menus and

cont_ns algorithms that deterrriine characteristics of the solid being studied.
The _head directory describes the data structures used throughout the
"envdes' directory. These structures are the method by which separate pieces

of information are, group, ed. In the "envdes" directory are three additional
directories. The geom directory deals with issues of categorizing and
altering the geometry of the ong'-inal solid. The "feat" directory has files
which are responsible for defining both simple and complex features and for
applying loads and boundary conditions to these features. The "misc"
directory is the miscellaneous area where additional functions reside.

Included in this area are routines to determine the purpose and resources for

the analysis and routines essential to many of the meshlng abilities of Adept.

-2-

PROGRAM EXAMPLES

Adept includes a run-time version of CLIPS and an associated rule-base.

During the execution of an Adept session facts are asserted defining the
current status. These facts might describe characteristics of the solid being

considered for finite element modeling or the facts might conce .rn what menu
is being shown to the user. The presence of facts determine what rules fire.

The firing of these rules can have the following consequences. Existing facts
can be retracted where facts are removed from the working, memory. New
facts could be generated. Functions can be called to obtain additional
information about the modeling situation.

All the rules reside in a file named rules.clp. This file is located in the clips
directory. Excerpts from that file will be inspected in detail so the user will
tiiicierstand how to alter the existing rule base if desired. Information will also

be supplied in order that the user can recompile an altered version of Adept
to visualize the consequences of changing or adding rules.

A short introduction to dips will be given here. The user is advised to study
the CLIPS USER GUIDE and CLIPS REFERENCE MANUAL from the

Johnson Space Center for in-depth instruction on programming in CLIPS.
Let's begin_ with a simple clips rule that will generate a new fact from some
existing facts. This shguld give the user an understanding of how the
working memory changes. In the clips directory is the file "rules.clp". In this
file are the rules, including:

(defrule Mirror:x '"'
'declare (salience 20))
Simplification Checks)
Geom Mirx True)
'Lbc Mirx True)

__-->

(assert (Reducex Yes))
)

For this rule to fire, the facts "Simplifications Checks", "Geom Mirx True", and
'%BC Mirx True" must exist. The declare command is a method of having this
particular rule fire before or after a rule of otherwise equal importance. A
salience number can be set from -10,000 to +10,000. Larger numbers place

rules of, otherwise equal level in position to be fired first. When this rule
named Wlirror:x' fires it creates a new fact. The working memory now
includes the fact '_Reducex Yes".

With this rule we have determined that in the case of the geometry having a

symmetry in the x-direction and the loads and boundary condition3 havfng

the same symmetr_ in the x-direction we will keep a fact in the memory
which states we rash to reduce the solid by cutting the solid in half at the

-3-

lane X=0. We have in this case only stated a fact, we have not called any

nction to perform the reduction of the solid.

In the next example is a case where the presence of facts fire a rule and then
the facts are retracted. This enables the user to keep the working memory
free of extraneous information. The retraction of facts also allows the user to
restate the same facts and retire the rule in order to use a section of the

program more than one time. Here is the rule "Get:NewForces":

(defrule Get:NewForces '"°

IStage 0)
•fl (-(Loadbcs Obtained)
?f2 _-(Loadset Bad)

(retract ?fl ?f2)
>"-(assert (Redo Loadbcs))

_ .

If the facts "Stage 0", '1_oadbcs Obtained", and '1_oadset Bad" exist, the rule
will fire. The retract statement omits the facts '_Loadbcs Obtained" and

'1_oadset Bad". Following this:operation another fact is asserted. If the loads

and boundary conditions are obtained and if checks have been done to
determine that the loads_t is not acceptable then the program proceeds to the

section to get a new or updated set of loads and boundary conditions.

The following example includes a call to. a user senerated function. At the
end of the rule is the routine "clips-over. Look m the file chps/usrfuncs;.c

to find the prover way to define all user supvlied functions. Look in me file
"envdes/misb./rm_ mes_.c" to find the actual '_" function "clips_over()". All of

the user defined-functions in "rules.clp" are generated in roughly the same

way.

(defrule Clips:Finished '"'
?fl <-(Mesh Exists)

re tract ?fl)
chps-over)

)

A more advanced example shows the use of a supplied function that returns

a specific value to CLIPS.

-4-

(defrule Nostress:Option '"'
LStage O)

oadbcs Obtained)
<-(Give User Warning 1)

retract ?f2)

hind ?retval (lbc-accept-option))
if (_ ?retval 0)

then

(assert (Loadset Bad))
else

(assert (Stress Generated))
)

In-this case the function 'Ibc-accept-option" captures the return value and
stores the integer returned in the variable "retvar'. Comparisons are then
performed to see which fact should be asserted. The actual function

_lbc_accept_opt0" is contained in "envdes/geom/sset.c". Also in this rule is
the metldod to perform comparisons..The.line with "if (= ?retval 0)" shows
the format for comparing a variable to some constant value. The constant
could have just as easily been another constant. Variables are only good
inside a rule. If a variable value were needed in another rule it could be

retained through the use of an asserted fact. The following rule gives an
example of this.

(defrule Reduce:Solid '"'
?fl <-(Reduce Solid)
?f2 <-(Reducex ?x)
?f3 <-(Reducey ?y)
?f4 <-(Reducez ?z)

reduce-solid ?x ?y ?z)
symm-bc ?x ?y ?z)
retract ?fl)
assert (Set Elemtype))

)

In this rule the variables "x", "y", and "z" are variables that are defined to be
either Yes or No. This occurs because if the fact "Reducex -" exists, the

second word is always "Yes" or 'rNo". The same is true for the other
directions. In this way the variable "x" is set to "Yes" or 'rNo". Also shown in
this rule is the method to pass arguments to user supplied routines. In the
function "reduce-solid" three arguments are passed. Refer to

"envdes/misc/s_mparm2.c" to find the function "reduce_solid()" and an
example of how to pass arguments to functions.

-5-

COMPILING A NEW VERSION OF ADEPT

In the event the user wishes to add facts or routines to Adept this section

will diagram the method by which a new version of Adept can be generated.
Adept xs an application program that attaches to AutoSolid. All irtformation
which passes _6etween AutoSolid and Adept is accomplished through the

AutoSolid Programming Interface (API). When a user supplied program is
to be attached to AutoSolid, the user gives a command similar to:

setenv ASUSRPROCI/files/homedusers/cadreYnasa/envdes/adept

In this case the directory location of the adept executable is specified. If the
uSer wished to detach the program from AutoSolid this can be accomplished

by the command:

setenv ASUSRPROCI noproc

More on this subject can be found in the

Programming Interface Manual.

Introduction to the AutoSolid

If any files which reside in "nasa/envdes/{feat, geom, or misc}" are changed,
the user will need to issue the operating system command 'make' while in
the directory where a change has occurred. If any changes have been made to
either "nasa/dips/rules.dp'r or to "nasa/clips/usrfuncs.c" then the user will

have to update the compiled versions in'the directory clips. This can be

accomplished with the following commands. Enter the clips directory. Then

type:

make < cr <cr> is carriage return. This matches the functions
called for in rules.alp and usrfuncs.c with those in feat,

geom, and misc. All requested functions need to exist
somewhere in the code.

CLIPS < cr > This command startsthe stand alone version of dips.

load "rules;clp")<:cr > This loads the rules.alp file.
rules-to-c rules.c 1)< cr> This cause clips to generate c code

directly from the rules.

(exit)< cr > This exitsthe stand alone version of dips.

make lib < cr > This generates the object files in the dips directory.

Now return to the envdes directory. The 'make' command in this directory

-6-

will now generate the executable Adept. This completes the operation for
creating an updated version of the Adept program.

-7-

CODING STRUCTURE FOR ROUTINES

This section is included in an effort to give the user an overview of the
structure of the Adept program. A brief description of the file structure is
given in case the user would like to make programming changes to the
current Adept system. As stated previousIy, Adept consists of three
portions, a data structure directory (head), an environment descriptor
directory (envdes), and an expert system directory (clips).

Table 1 is a summary of the most important structures defined in the

"nasa/head" directory.

Included in the "nasa/envdes" directory are three separate directories. These

are the "feat", "geom", and "misc" directories. Tables 2 through 4 define the
file contents of these directories with a short summary ot the processes that

are handled within each file. This portion of thepro_ram deals exclusively
with the description of the solid and the attached attributes. In these
routines are many api (AutoSolid Programming Interface) calls back to the
geometric database for the purpose of obtaining specific facts about the solid.
Refer to the AutoSolid Programming Interface Reference Manual for an 'm-
depth description of build'rag and attaching an application program tot
AutoSolid. _

• ¢ " • " " 1' i '!The expert system portion of the program is contained within the nasa/cl ps
directory. There are many files m this directory with the vast majority of

these being specific to the generic version of CLIPS. The only files the user

needs to change in the process of generating an ,al,tered version of Adept are
"usrfuncs.c" and "rules.clp". The file "usrfuncs.c' handles the association of

clips defined routines with the actual "c" routines located in the environment
descriptor portion of the software. The "rules.clp" file contains the clips rules
which direct the procedure of the building the finite element mesh f_om the

original solid• Very few arithmetic calculations are performed in the rules file.
The environment descriptor is heavily used to obtain facts about the solid and
its loading and boundary conditions. The rules control the information

gathering and the determinations that are made once the characteristics of the
specific situation have been classified. Refer to either the USER S MANUAL
or the THEORETICAL MANUAL for an overview of the procedure used to

create the finite element mesh from the original solid.

-8-

TABLE 1. CONTENTS OF DIRECTORY HEAD

file name = na_bfil.h

/* Solid data structure */

rpedef struct na_sol

struct na_face *fac;

struct na_edge *edg;
struct na_vert *ver;
struct na_sol *nxt;

ap Mprop *mprop;
" sh'uct na_feat-*feat;

float s_area;

ap_Solid sol;
ap Solid sol2;
ap_-Sid str;
na _Extrev p extrev;
na_Mirphip msymm;

na_Repsymp rsymm;
short lbmsymm;
na_Ext_rev lbswp;"
short lbrsymm;
short dimn;
short curv;
short lbc_dir;

short purp;
short nware;
short swart;
short swarl;
short time;

short msh_density;
ap ElemListp elmlst;

} na_SoI,-_na_Solp;

/* linked list of faces */

/* linked list of edges */
/* linked list of verts */
/* next solid */

/* mass props pointer */
/* pointer to a list of assoc, feats */
/* total surface area of the solid */

/* original solid id */
/* simplified solid id */
/* graphics str */
/* sweep info. pointer */
/* geometric symm. info */
/* repetitive symm */
/* cocle for lbc symm */
/* code for lbc sweep */
/* code for Ibc repsym */
/* FE model dimension code */
/* FE model curvature code */
/* code for lbc dim. */

/* code for purpose of anal. */
/* code for hardware type */

/* code for software ht_me,_//* code for software

/* code for time of analysis execution */
/* code for mesh density */
/* linked list of assoc, elements */

/* Face data structure */

ypedef struct na_face

ap_Fac l_face_id;
ap_FaceInfo l_face;

struct na ed_i *ed$i;
struct na-ven *ven;

struct na_face *l_facenext;
short util;
struct na_facl *sfac;
Bool is_mesh;
Bool shell_tested;

/* AutoSolid face id */
/* Information about face */

/* linked list of edges */
/* linked list of verts */
/* next face */

/* utility code */
/* sub-face list */

/* flag if surface to be meshed for 2d */
/* flag to check if XXXXX */

-9-

ap Sid str;
ap-ElemListp elmlst;
sh'uct ap..pmesh *pmesh;
ap_Rea[box[6];

} na_Fac, *na_Facp;

/* graphics str */
/* element list to be assoc, with face */

/* pointer to pmesh of the surf. */
/* face box */

/* Linked list for sub-faces */

ypedef struct na_facl

struct na_faci *fad;
struct na._fad *nxt;

} na_Fad, *na_Fadp;

/* pointer to the sub-face */
/* pointer to the next sub-face */

/* Sub-face data structure */

edef struct na_faci

na_Facp fac;
struct na_faci *nxt;
short util;

float s perim;
float s-area;

ap Sid str;
L_b__list Ibc;

short feat imp;
short msh- density;
struct na__at *feat;

short is_cavfac;

} na_Faci, *na_Facip;

/* back pointer to the original face */
/* next fac */

/* utility code for display */
/* perimeter of the sub-face */
/* area of the sub-face */

/* graphics structure */
/* Ibcs for the sub-face */

/* feature importance code */
/* mesh density level */
/* linked list of features it belongs to */
/* flag to det. if it is a concave face */

/* Edge data structure */

edef struct na_edge

ap_Edg l_edge_id;
ap EdgeInfo l_edge;
struct na_face *fac[2];
struct na_vert *ver[2];

struct na_edge *l_edgenext;
short util;

ap. Sid str;
L'bc_list lbc;

short feat imp;
short msh_density;

ap_ElemListp elmlst;
ap_Real box[6];

} na_Edg, *na_Edgp;

/* AutoSolid edge id */
/* edge information */

/* the two bounding faces */
/* the two bounding edges */
/* next edge */

/* utility co)de */
/* graphics structure */
/* lt)c list for the edge */
/* feature importance code */
/* mesh density level */
/* list of assoc, elements */

/* edge box */

/* Linked list for edges */

- 10 -

ypedef struct na_edgi

na_Edgp edg;
struct na_edgi *nxt;
short util;

} na_Edgi, *na_Edgip;

/* pointer to the underlying edge */
/* pointer to the next data structure */
/* utility code */

/* Vertex data structure */

rpedef struct na_vert

ap_Ver l_vert_id;
ap_VerPt l_vert;
struct na_faci *fad;

struct na edgi *edgi;
struct na-vert *l_vertnext;

-- short util;

short numedg;
short numcav;

ap Sid str;
L'b__list lbc;

short feat imp;
short msh- density;
ap ElemL_stp elmlst;

} na_Ver,-*na_Verp;

/* AutoSolid vertex id */
/* vertex coord info. */
/* linked list of assoc, faces */

/* linked list of assoc, edges */
/* next vertex */

/* utility code */
/* number of assoc, edges */
/* number of assoc, concave edges */

/* graphics structure */
/* lbc list for the vertex */

/* feature importance code */
/* mesh density level */
/* list of assoc, elements */

/* Linked list for vertices */

rpedef struct na_veri

na_Verp ver;
struct na__veri *nxt;

} na_Veri, *na_Verip;

/* underlying vertex */
/* pointer to the next data structure */

typedef ap VertList *ap VertListp; /* Pointer to the API vertex list */

typedef ap-EdgeList *al__EdgeListp; /* Pointer to the API edge list */
typedef ap-FaceList *ap_FaceListp; /* Pointer to the API face list */

- 11-

file name = na_feat.h

,pedef enum

STEP = 0,
NOTCH,
BLIND_NOTCH,

BLIND_STEP,
SLOT,
BLIND_SLOT,
POCKET,
HOLE,
PROTRUSION,

BRIDGE,
CAVITY,
STOCK,

- DISJOINT,
NONMANIFOLD,

UNKNOWN,
USED,
AMBIG

} Feat_type;

/* Complex feature data structure */

ypedef struct na_feat

Feat type ftype;

na_F-acip facp;
na_Edg_p edgp;
struct na_feat*nxt;

na_Facp cavfac;
int numcavedg;
int numcavfac;

na_Solp fsol;
float s_area;

ap_Sid str;
short feat_imp;
short rash_density;

} na_Feat, *na_Featp;

/* feature type */
/* list of assoc, sub-faces */

/* list of assoc, edges */
/* next edge */

/* pointer to underlying concave face */
/* number of concave edges */
/* number of concave fac'es */

/* the assoc, prim with ha_feat */
/* surface area of the feature */

/* graphics struct of the feature */
/* teature importance code */
/* mesh density code */

- 12-

file name = na_symm.h

rpedef enum

NONE =0,
EXTN,
REVN,
BOTH,
UNKN

} na_Ext_rev;

/* Extrusion/Revolution info data structure */

rpedef struct extrev

- na_Ext_rev code;

ap_Vector3d eaxis;
ap Wcpt ecen;
ap-Vector3d raxis;
ap-Wcpt rcen;
Bbol sphere;
Bool cuboid;

na_Ext_rev test;

} na_Extrev, *na_Extrevp;

/* extrusion/revolution code */
/* extrusion axis orientation */
/* extrusion axis location */
/* revolution axis orientation */
/* revolution axis location */

/* code for sphere; multiple raxis */
/* code for cube; multiple eaxis */
/* code to check if already tested */

/* featids */

rpedef enum

NORS = 0,
LINE,

CIRC,
BORS,
UNRS

} na_Rep_sym;

/* Repetitive symmetry data structure */

,pedef struct repsym

na Rep sy m code;
ap-Vector3d laxis;
ap-Wcpt lcen;

ap-_Vector3d raxis;
ap Wcpt rcen;
na-Rep sy m test;

} na_Repsyn_,-_na_Repsymp;

/* repetitive symmetry code */
/* linear symm. axis orientation */
/* linears axis location */
/* circular ymm" axis orientation */symm.
/* circular symm. axis location */
/* code to check if already tested */

/* Mirror plane data structure */

- 13 -

,pedef struct mirpln

short code;

ap Vector3d plaxis;
ap_Vector3d p2axis;
ap Vector3d p3axis;

ap_Wcpt pcen;
short test;

} na_Mirpln, *na_Mirplnp;

/* mirror plane code for X/Y/Z symm */
/* redundant field for 1st mplane */
/* redundant field for 2nd mplane */

/* redundant field for 3rd mplane */
/* redundant field for centrold of mplanes */
/* code to check if already tested */

- 14-

file name = na_lbc.h

#define EPSILON .000001

_pedef enum

BC_FIXED,
BC_FREE,
BC_LIMITED

} Bc_free ;

/* Boundary condition data structure */

rpedef struct bc

" Be_free bc_free ;
Real bc_lim[3] ;

}Bc;

/* boundary condition type */

/* limited displacement vector */

ypedef enum

LD_FORCE,
LD_PRESS,
LD_TEMP,
LD_RACCEL,
LD_LACCEL,
LD_RVEL,
LD_RTEMP,
LD_UTEMP

} Ld_type ;

/* load data structure */

pedef struct load

Ld_type ld_type ;
ap Real ld mag ;
ap-Vector3-d ld_vec ;

} Load ;

/* load type */ .
/* load magnitude */
/* load vector */

/* lbc data structure */

rpedef struct Ibc_list

Bool lbc_isload ;
int lbc_setndx ;
union

(
Load lbc_load ;

/* load or bc */

/* index into load/bc group */

/* load data */

- 15 -

Bc lbc_bc[6] ;
} lbc_un ;
Featid lbc_fid ;
struct lbc_list *lbc_next ;
ap_Sid str;

} *Lbc_lfst ;

/* bc data */

/* feature with which load/bc associated */
P next lbc_list struct */
/* graphics structure */

rpedef enum
EL_LTRIAN,
EL_QTRIAN,
EL_LSHELL,
EL_QSHELL,
EL_LTETRA,
EL_QTETRA

} Elem_type ; /* element type */

typedef ap ElemList *ap ElemListp;
typedef ap-FeatList *ap_eatListp;

/* linked list of elements */
/* linked list of features */

- 16-

file name = na_node.h

/* Tree node data structure */

ypedef struct na_node

long na_type;
long na_boolop;
struct na_node *na_left;

struct na_node *na_right;
struct na_node *na_parent;
long na_solid;
float na_real;

ap Trans3d mat;
} na_Nnod, *na_Nnodp;

/* node */
/* node ,t_rpe

/* left child */

/* right child */

/* back pointer to the parent */
/* solid id */

/* optional float field */
/* rigid motion of the node */

/* type codes for na_type */

#define NASPPRIM 1000L
#define NATYPE 100L
#define NATBLO 103L
#define NATCON 402L
#define NATCYL 202L
#define NATSPH 301L
#define NATTOR 502L
#define NATWED 603L
#define NATMET 900L
#define NAHALF 8000L
#define NAMPLA 8001L
#define NAMCON 8002L
#define NAMCYL 8003L
#define NAMSPH 8004L
#define NAMTOR 8005L
#define NAMBOX 8006L
#define NANVAL 2000L
#define NANRAD 2001L
#define NANHGT 2002L
#define NANXVL 2003L
#define NANYVL 2004L
#define NANZVL 2005L

#define NANMAJ 2006L
#define NANMIN 2007L
#define NANALP 2008L
#define NANCMP 2009L
#define NAOPER 4000L
#define NAOUNI 4001L
#define NAODIF 4002L
#define NAOINT 4003L
#define NAOASB 4004L
#define NAOCOM 4005L
#define NAANULL 0L

I

-17-

TABLE 2. CONTENTS OF DIRECTORY FEAT

na_bbfil.c

X na_bfeat.c

na eqedg.c

na_eqhlf.c

na_feat.c

X na_featl.c

X na_feat2.c

X na_feat3.c

X na_feat4.c

na_lbc.c

na_pfeat.c

na_pftl.c

na_pft2.c

X na_prot.c

na_reori.c

na_supt.c

* Create the boundary filedata structs for the solid *

* Create user defined complex features *

* Geometry checks to see if two edges are the same edge *

* Geometry checks to see if two half-spaces are the same *

* Controls definition of complex features from original solid *

* X Automatic_ X User-defined_ Primitive classification *

* Automatic complex feature category determination *

* Flag certain simple features for display purposes *

* Create meta-primltives for features *

* Highlight the previously obtained complex features *

* Adds/deletes Ibcs to features - also shows simple features *

* Prlm|tives are classified as complex features *

* Create an updated tree for solid in terms of features *

* Highlight complex features and match new tree with the old *

* Track faces attached to concave/convex edges of features *

* Relocate the solid's centroid and match principal axes to global axes _

* Create polymesh data structs for Ibc visualization *

The features and routines marked with X are de-llnked from ADEPT for

now due to efficiency and stability reasons.

-18 -

TABLE 3. CONTENTS OF DIRECTORY GEOM

apprm.c

apprm2.c

apprm3.c

cgeom.c

cgeom2.c

cgeom3.c

clbc.c

clbc2.c

clbc3.c

inv.c

na_csym.c

na_erev.c

na_symm.c

sset.c

* determine new rigid motion for a new orientation of the solid *

* apply the rigid motion to Ibcs *

* update box slze, features etc. wlth new rigid motion *

* menu control for geometric characterization of solid *

* menu control for extrusion/revolutlon and mirror symmetries *

* filtering complex features from original solid *

* classification of characteristics of loads and boundary conds *

* algorithms to check plane-stress/straln and categorize Ibc *

* algorithms to classify the Ibcs ext/rev, mirror planes *

* matrix inversion and vector multiply routines *

* circular symmetry algorithms *

* algorithms for extrusion and revolution determinations *

control for automatically reorienting the solld's princ axes *

menu control for reviewing/altering previous adept settings *

- 19 -

TABLE 4. CONTENTS OF DIRECTORY MISC

applbc.c

applbc2.c

applbc3.c

C0801.C

divfrc.c

drw_new.c

drw stuf.c

elm2fea.c

elm_div.c

fea_dens.c

menu.c

mk_mesh.c

purpose.c

region.c

resorces.¢

s mparm.¢

s_mparm2.¢

* Control transfer of lbcs to mesh from features *

* Classify nodes of the solid *

* Distribute forces and pressures on features of the solid *

* Reduce solid if desired. Generate new octree box *

* Determine if the lbcs are mirrored and scale them *

* Draw the force, pressure, and boundary condition vectors *

* Draw basic primitives used by drw_new routines *

* Associate elements of the mesh with simple features *

* Check compatibility of mesh rankings and divide the elements *

* Form lbc sphere and assign feature density *

,
* Main p.arameters menu checks resources and purpose

* On exit of clips generate the mesh, transfer loads and bcs *

* Determine purpose of analysis and assert associated facts *

* Assign ranking to simple and complex features *

* Generate menu for obtaining resource information for analysis .*

* Review (elem type, surf/solid, etc.) prior to mesh generation *

* Calculations for placing octree and choosing mesh density level *

